Skip to contents

All functions

Approx.integration()
Approximate Integration Method Selector
CI_Bootstrap()
Bootstrap Confidence Interval for Model Parameters
EM()
EM Algorithm: Expectation-Maximization (EM) Algorithm
EM_iter_plot()
Plotting EM Algorithm Iteration Results
E_z()
EM Algorithm: Expectation Step (E-step)
Integrand_fun()
Integrand Function for the Gaussian-Legendre Integral
Lambda_cum()
Cumulative Lambda Calculation
Lambda_fun()
Lambda Function Calculation
Lambda_fun_der()
Lambda Function Derivative Calculation
Log.liklihod()
Compute Log-Likelihood for Various Models
M4.loglik()
Compute Log-Likelihood for the M4 Model
Reliability()
Compute Reliability over Time
degradation.path.plot.summary()
Degradation Path Plot Summary This function generates the degradation path plot based on different lambda functions for time and cycles.
drIG()
Probability Density Function of the Reparameterized Inverse Gaussian (drIG)
f_uz_given_D_gaussian()
Estimate Function for f(u_ij | D)
fit.path.plot()
Plot Fitted Path with or without Confidence Intervals
fit.path.process()
Compute Fitted Path for Each Product
gaussian_legendre_integral()
Gaussian-Legendre Integration
init.guess()
Initial Parameter Guess Using Optimization
init.log.likelihood()
Initial Log-Likelihood Calculation
mc_integral()
Monte Carlo Integration
move_infinite()
Function to Remove Rows Containing Infinite Values or Exceeding Thresholds
path.3D.plot()
3D Path Plot of Degradation Loss
performence.compare()
Function to Compute Performance Metrics (RB, MSE, RRMSE, CP, LEN)
prIG()
Cumulative Distribution Function of the Reparameterized Inverse Gaussian (prIG)
rrIG()
Reparameterized Inverse Gaussian Random Number Generator (rIG)
save.result()
Function to Save Simulation Results
selected_fun()
Function to Filter Rows Based on Criteria
sim.dat.path()
Simulate Degradation Data
trapezoidal_integral()
Trapezoidal Rule Integration
uncon_lifetime_CDF()
Reliability Function Calculation